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Abstract We investigate the effect that Rashba spin-orbit coupling has on the low energy
behaviour of a two dimensional magnetic impurity system. It is shown that the Kondo ef-
fect, the screening of the magnetic impurity at temperatures T < TK , is robust against such
spin-orbit coupling, despite the fact that the spin of the conduction electrons is no longer
a conserved quantity. A proposal is made for how the spin-orbit coupling may change the
value of the Kondo temperature TK in such systems and the prospects of measuring this
change are discussed. We conclude that many of the assumptions made in our analysis in-
validate our results as applied to recent experiments in semi-conductor quantum dots but
may apply to measurements made with magnetic atoms placed on metallic surfaces.

Keywords Kondo effect · Rashba spin-orbit coupling · Magnetic impurities ·
Strongly-correlated electrons

1 Introduction

The physical behaviour of a single magnetic impurity interacting with a large number of
conduction electrons has been, and continues to be, a fascinating subject of inquiry for over
four decades. The emergence of a strong correlation between the impurity and the con-
duction electrons at low temperatures, first predicted by Jun Kondo [1], gives rise to the
well-known Kondo effect wherein the impurity is effectively screened by forming a singlet
with the surrounding electrons. Much still remains to be understood regarding strongly cor-
related quantum many-body physics. The Kondo effect, as a well understood example of
a strongly correlated phenomenon, has proven to be a fertile topic for further study in this
important field [2].

In recent years, the study of these magnetic impurity systems has seen a resurgence
due to the great advances in experimental technology that allow one to construct, control,
and manipulate objects on the nanometer scale. In particular, the Kondo effect has been
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observed in numerous experiments involving quantum dots constructed in semiconductor
heterostructures [3, 4], as well as in systems where a magnetic atom is placed on the surface
of metal [5, 6].

Both of these systems involve a local moment, either that of an odd number of localized
electrons (as in the quantum dot) or of a partially filled outer shell of an atom interacting with
mobile electrons confined to move in two dimensions. The confining potential breaks the
inversion symmetry that is manifest in the conduction electrons and gives rise to a coupling
between their spin and momentum [7]. Such spin-orbit coupling (coined as Rashba spin-
orbit coupling to differentiate it from coupling arising from other mechanisms which may
break the inversion symmetry) has been analyzed theoretically and observed experimentally
in both semiconductor quantum wells [8, 9] and in metallic surface states [10–12].

The presence of such a spin-orbit coupling means that the SU(2) symmetry of the con-
ductions electrons is no longer present and that the spin of the electrons is no longer an
eigenstate of the system. Given this fact, it seems, at first, remarkable that the Kondo effect,
which depends crucially on the magnetic exchange interaction between the local moment
and the spin of the conduction electrons, is observed at all in such two dimensional systems.
This issue was first examined in [13] where it was shown that the presence of time rever-
sal symmetry in the Kondo interaction term preserves the spin coherence of the electron
propagator. That is, although spin is no longer a “good” quantum number, the scattering tra-
jectories of the electron that would destroy its spin coherence in multiple interactions with
the impurity are exactly cancelled by the time reversed paths. While such a powerful argu-
ment may explain why the Kondo effect survives the apparent breaking of spin coherence, it
is not precise enough to determine the change in the low energy behaviour of such impurity
systems in the presence of a spin-orbit coupling in general. A more detailed calculation is
required in order to gain such information.

There have been several studies that have investigated the role of spin-orbit effects in
specific semiconductor mesoscopic devices where the Kondo effect is manifest [14–17]. In
these studies, the spin-orbit interaction either takes place within a quantum dot coupled to
conducting leads or within one dimensional wires, often coupled to a localized magnetic
moment. In this paper, we derive a model to study the effect that the Rashba spin-orbit
coupling has on the low energy behaviour of a two dimensional system with a magnetic
impurity. The generic nature of the derived model may not be as readily applicable to the
analysis of a specific experiment as those cited above, but it does have the advantage of
elucidating some general features of the physical interplay between the Kondo and Rashba
interactions that might be less transparent in more complicated quantum dot studies.

The model is presented in Sect. 2 and an effective model relevant to the study of the
low energy behaviour is derived. The analysis of the effective model suggests that a more
physical property of the system should be calculated in order to get a better sense of how the
spin-orbit coupling influences its behaviour. In Sect. 3, the resistivity of the full two dimen-
sional model is calculated and compared to Kondo’s classic result [1]. The combination of
this result together with an analysis of the effective model leads to various conclusions and
predictions which are discussed in Sect. 4.

Throughout the analysis we use the following conventions: vector quantities are repre-
sented by a boldface character and the same character without boldface denotes the vector’s
magnitude. Repeated Greek indices are assumed to be summed over unless one of them is
enclosed in brackets. Finally, we work in units in which � = 1 except when estimating the
values of certain quantities in which case the precise units will be given.
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2 Model Hamiltonians

2.1 Full Two Dimensional Model

We first consider electrons confined to travel in the xy plane as the result of some non-
constant electric potential in the z direction. The motion of the electrons in the presence of
this electric field gives rise to a coupling between the spin of the electron and its momentum,
which can be expressed by the Rashba Hamiltonian [7, 8]

HR = 1

(2π)2

∫
d2k

{
k2

2m
�

†
kμ�kμ + α�

†
kμ(kxσ y

μν − kyσ x
μν)�kν

}
. (1)

Our notation is as follows: m is the effective mass of the electron, �kμ is the operator that
annihilates an electron of momentum k = (kx, ky) and spin μ and satisfies the anticom-
mutation relationship {�†

kμ,�k′ν} = δμνδ
(2)(k,k′), α is the strength of the Rashba coupling

which is proportional to the derivative of the electric potential in the z direction, and σ i
μν are

the Pauli matrices so that �
†
kμσ i

μν�kν is twice the ith component of the spin of the electron.
This Hamiltonian can easily be diagonalized to be of the form

HR = 1

(2π)2

∫
d2k

∑
a=±

εa
kA

†
kaAka. (2)

The Rashba bands are non-degenerate and take the form

ε±
k = 1

2m
(k ± kR)2 − εR, (3)

where we have defined the Rashba momentum scale kR := mα and the corresponding
Rashba energy scale εR := k2

R/2m. The relationship between the operators that create parti-
cles in these Rashba bands and the original electron operators is

A
†
k± = 1√

2

(
�

†
k↑ ± ieiθ�

†
k↓

)
, (4)

where θ is the angle of the momentum k in polar coordinates and the normalization has been
chosen such that {A†

ka,Ak′b} = δabδ
(2)(k,k′).

Now consider a spin-1/2 magnetic impurity1 at the origin, described by the spin opera-
tor S. We write the interaction between this spin and the electrons using the so-called s-d
exchange Hamiltonian or Kondo Hamiltonian

HK = V

(2π)4

∫
d2k d2k′ Jkk′S · �†

kμ

σμν

2
�k′ν, (5)

where V is the two dimensional volume of the system. This interaction can be thought
of as arising from an Anderson impurity model [19, 20] of a two dimensional Fermi gas
interacting with a localized electronic state with strong Coulomb repulsion. The details of
this relationship (in the absence of spin-orbit coupling) are discussed in Appendix 1 where
the specific form for Jkk′ is derived for various models of the hybridization between the
local state and the electronic Fermi gas.

1It is straightforward to generalize the results of this paper for the case of an impurity with higher spin.
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In the absence of Rashba spin-orbit coupling, the physics of the Kondo Hamiltonian is
very well known [2]. In the case of a ferromagnetic coupling (Jkk′ < 0) between the impurity
and the electrons, the impurity essentially decouples from the electrons at low temperatures.
If the exchange interaction is antiferromagnetic, then there exists a temperature scale TK , the
so-called Kondo temperature, below which the magnetic impurity is screened by forming a
singlet with the surrounding electrons. Many low-energy properties can then be derived
(using a variety of techniques depending on the temperature regime) and most can be shown
to depend on universal scaling functions of T/TK [2]. For the case where the interaction
occurs at a single point, Jkk′ = J and the Kondo temperature can be expressed to lowest
order in J as

TK = De
− 1

2Jρ0 , (6)

where ρ0 is the density of states evaluated at the Fermi energy and D is an effective band-
width.

In semiconductor quantum dots, the value of the Kondo temperature is tunable though the
maximum value is set by the size of the dot: the smaller the dot, the larger the temperature.
In this way, Kondo temperatures as high as 1 K have been obtained [3, 4]. The Kondo
temperature of a magnetic atom on a metallic surface can span quite a wide range depending
on the nature of the impurity atom and which metallic surface is used. In the case of a Co
atom on Au(111), a Kondo temperature of TK ≈ 70 K has been measured [12].

To describe a system with both a Kondo impurity and Rashba spin-orbit coupling, we
can use (4) to write the Kondo interaction compactly in the Rashba operator basis as

HK = 1

4

V

(2π)4

∫
d2k d2k′ Jkk′

∑
a,b=±

Sab
kk′A

†
kaAk′b, (7)

where

Sab
kk′ := iaeiθ ′

S− − ibe−iθS+ + (
1 − abe−i(θ−θ ′))Sz (8)

and S± := Sx ± iSy are the raising and lowering operators for the impurity spin. On the right
hand side of this equation, a, b = ±1 when the labels a, b = ± respectively.

The full two dimensional Hamiltonian, which we call the Kondo-Rashba model herein, is
then H = HR +HK where HR is given by (2) and HK is given by (7). Given the complicated
nature of the interaction between the Rashba quasi-particles with non-degenerate bands and
the magnetic impurity, it is not clear at this stage whether or not the well-known physics of
the Kondo effect, briefly described above, is still manifest in the Kondo-Rashba model.

2.2 Low Energy Effective One Dimensional Model

The simplest form for the exchange interaction is to consider that it occurs at a single point.
As discussed in Appendix 1, this means that Jkk′ = J . In this case, decomposing the op-
erators into their different angular components reveals that only a finite number of angular
modes couple to the impurity.

We first investigate the Kondo interaction in the absence of spin-orbit coupling. With k

and θ being the amplitude and angle of the momentum k, we can write

�kμ = 1√
2πk

∞∑
m=−∞

ψkμmeimθ (9)
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and using the orthonormality of (1/
√

2π)eimθ this implies that

ψkμm =
√

k

2π

∫ 2π

0
dθ e−imθ�kμ. (10)

We have included the prefactors of
√

k here so that the polar components ψ of � behave
as ordinary Fermionic operators {ψ†

kμm,ψk′νn} = δμνδmnδ(k − k′). In terms of these angular
components, the Kondo interaction (5) can be written as

HK = J

2

V

(2π)3

∫ ∞

0
dk dk′ √kk′S · ψ†

kμ0σμνψk′ν0. (11)

That is, the Kondo interaction is effectively a one-dimensional interaction, and all higher
harmonics decouple from the impurity.

In the presence of Rashba spin-orbit coupling, it is convenient to write the Kondo inter-
action in terms of the operators that create and annihilate Rashba quasi-particles. First we
define the following operators, which are directly related to the m = 0 and m = −1 angular
components of the Ak± operators respectively

ak±↑ :=
√

k

2π

∫ 2π

0
dθ A±(k, θ), (12)

ak±↓ := ±i

√
k

2π

∫ 2π

0
dθ eiθA±(k, θ). (13)

These satisfy the usual Fermionic anti-commutation relations {a†
kbμ, ak′cν} = δbcδμνδ(k−k′).

By combining (10) and the inversion of (4), one can show that

ψkμ0 = 1√
2
(ak+μ + ak−μ). (14)

Since ψkμ0 is the only electronic mode that couples to the impurity (cf. (11)), we see that
only the m = 0,−1 modes of the Rashba quasi-particle operators couple to the impurity and
all other modes can be neglected.2 Hence, we may write the Kondo-Rashba Hamiltonian as
a one dimensional model

H = 1

(2π)2

∫ ∞

0
dk

∑
b=±

εb(k)a
†
kbμakbμ

+ J

4

V

(2π)3

∫ ∞

0
dk dk′ √kk′

∑
b,c=±

S · a†
kbμσμνak′cν . (15)

This has the form of a two channel Kondo model with off-diagonal couplings, where each
channel has a different dispersion relation and the coupling with the impurity is the same
between each of the channels. In this expression, the Greek indices no longer refer to the
spin of the electron but, instead, a combination of the spin and orbital angular degrees of

2The fact that only the −1 mode couples and not the +1 mode can be traced back to the choice of global
phase in the states that diagonalize the Rashba Hamiltonian (4). Of course, such a choice is arbitrary and does
not effect the resulting analysis.



746 J Stat Phys (2007) 129: 741–757

freedom. This can be seen explicitly by writing the ak±μ in terms of the angular modes of
the electrons (10)

ak±↑ = 1√
2
(ψk↑0 ∓ iψk↓+1), (16)

ak±↓ = 1√
2
(ψk↓0 ∓ iψk↑−1). (17)

Since we are interested only in the low energy properties of the Kondo-Rashba model
at this stage, we can focus only on the quasi-particle excitations close to the Fermi energy.
Hence, we expand each of the dispersions to linear order about their respective Fermi mo-
menta kF±

ε±(k) ≈ εF + vF (k − kF±). (18)

We consider this approximation to be valid in some momenta range k ∈ (kF± −�,kF± +�)

for each of the ± bands respectively, such that kR 
 � 
 k0
F . The expressions for the Fermi

momenta and velocity as derived from (3) are given by

kF± = k0
F

√
1 + εR

εF

∓ kR, (19)

vF := dε±
k

dk
|kF± = v0

F

√
1 + εR

εF

, (20)

where we use a superscript 0 to indicate values for the Fermi gas in the absence of spin-orbit
coupling (i.e. k0

F = √
2mεF , v0

F = √
2εF /m). An important point to note is that the Fermi

velocities are the same for both the + and the − Rashba quasi-particles.
The kinetic energy of the Rashba quasi-particles (the first term in (15)) now reads

HR ≈ 1

(2π)2
vF

∑
b=±

∫ �

−�

dk ka
†
kbμakbμ, (21)

where we have shifted the integration variable to be measured with respect to kF± in each
of the two integrals in the summation respectively and simply relabelled the operators
a(k+kF±)±μ �→ ak±μ. The constant εF part of the linearized dispersion has also been dropped.

We now similarly restrict the region of integration in the Kondo interaction (the second
term in (15)) and expand

√
k and

√
k′ about either of kF± as appropriate. Since all higher

order terms in k and k′ are irrelevant we keep simply the constant term in each expansion.
The result is that only the combination

√
kF+ak+μ + √

kF−ak−μ couples to the impurity.
Hence, we define a new complete set of orthonormal operators

b
†
kμ := 1√

kF+ + kF−

(√
kF+a

†
k+μ + √

kF−a
†
k−μ

)
, (22)

b̃
†
kμ := 1√

kF+ + kF−

(√
kF−a

†
k+μ − √

kF+a
†
k−μ

)
. (23)

In terms of this new basis, our effective one dimensional model is

H = 1

(2π)2
vF

∫ �

−�

dk k
(
b

†
kμbkμ + b̃

†
kμb̃kμ

)
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+ J eff V

(2π)3
k0

F

∫ �

−�

dk dk′ S · b†
kμ

σμν

2
bk′ν . (24)

If we neglect the free b̃ quasi-particles that do not couple to the impurity, then this Hamil-
tonian is of the form of a single channel, single impurity low energy Kondo model with
rescaled parameters vF , given by (20), and J eff, given by

J eff = J
kF+ + kF−

2k0
F

= J

√
1 + εR

εF

. (25)

As is necessary, this reduces to the original Kondo model with unscaled parameters in the
limit εR → 0. This is an example of the N channel model studied by Simon and Affleck [18]
where it was shown that such models can always be reduced to a one channel model provided
that the Fermi velocities for all channels are the same (which is the case for the two Rashba
bands as shown by (20)).

We can interpret the change in the Fermi velocity as a change in the effective mass of
the quasi-particles that interact with the impurity. The corresponding change in the constant
density of states for 2D electrons ρ0 = m/2π is then

ρ = ρ0√
1 + εR

εF

. (26)

Multiplying (25) and (26) gives the result that

J effρ = Jρ0. (27)

Since the Kondo-Rashba model has been shown to reduce to the Kondo model with rescaled
parameters, the Kondo temperature is the same as that of the ordinary Kondo model, (6),
with the above rescaled coupling

TK = De
− 1

2J effρ = De
− 1

2Jρ0 . (28)

That is, up to any possible changes to the energy cutoff D which, in this analysis, was
implemented ad hoc, the behaviour of the Kondo-Rashba model is the same as that for the
Kondo model and the value of the Kondo temperature is unchanged.

3 Resistivity of the Two-Dimensional Model

As we saw in the above section, any deviation in the low energy behaviour of the Kondo-
Rashba model from that of the ordinary Kondo model (if there is any deviation at all) will
be manifest as a change in the Kondo temperature via a change in the effective bandwidth
cutoff D. In this section, we bring back the full two dimensional Kondo-Rashba model that
includes the full energy range of the Rashba bands up to some high energy cutoff imposed by
the finite range of the impurity interaction. In this way, band effects that were lost in the low
energy linearization can be included in determining the change in the effective cutoff that
appears in the expression for the Kondo temperature. Specifically, we calculate a physical
quantity of the Kondo-Rashba model, namely, the resistivity, and compare it to the same
quantity of the Kondo model, and interpret any difference as a change in this effective cutoff
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stemming from spin-orbit effects. The modification to the cutoff will then be incorporated
into the expression for the Kondo temperature.

As discussed in Appendix 1, a convenient choice for the finite range interaction with
the localized Anderson impurity (in the absence of spin-orbit interaction) leads to a Kondo
model of the form (5) with Jkk′ = Jh(k)h(k′) where h(k) = (� − k),  being the Heav-
iside step function and � = 2π/a being the momentum scale associated with the range of
the interaction a.

We will calculate the conductivity using the full two dimensional Kondo-Rashba model
H = HR +HK where the terms on the right hand side are given by (2) and (7). Following the
original calculation of Kondo [1], we use the semi-classical Boltzmann theory of transport,
appropriately generalized to the present case where the two bands are no longer degenerate,
as described in Appendix 2.

The resistivity is R(T ) = 1/σ(T ) where σ is the conductivity given by (60), specialized
here to the case of the two dimensional ± Rashba bands

σ(T ) = −e2

2

∫
d2k

(2π)2

∑
a=±

(va
k )

2τ a
1 (k)

∂f a

∂εa
k

. (29)

Here, e is the electron charge, va
k := ∇εa

k is the velocity of the ath band, f a is the Fermi-
Dirac distribution for the ath band, and τ a

1 (k) is the inverse of the scattering rate of the ath
band given by (64)

1

τ±
1 (k)

= 2πcimp

∫
d2k′

(2π)2

∑
a′

〈|Tka,k′a′ |2〉
(

1 − va′
k′

va
k

cos θ ′
)

δ(εa
k − εa′

k′ ). (30)

In this equation, cimp is the concentration of magnetic impurities (assumed to be dilute in
order to neglect interactions between the impurities themselves), θ ′ is the angle of k′ as
measured with respect to k, and Tka,k′a′ = 〈ka|T |k′a′〉 is the T-matrix, i.e. matrix elements
of the operator

T = HK + HKG+
0 HK + HKG+

0 HKG+
0 HK + · · · (31)

written in the basis of eigenstates |ka〉 of HR with G+
0 = 1/(ε − HR + iη) being the re-

tarded Greens function. The angle brackets indicate a free spin averaging over the impurity
operators in the T-matrix.

If we consider J 
 εF then we can interpret (31) as a perturbation expansion and com-
pute it to O(J 2) using the full Kondo-Rashba interaction (7), as denoted diagramatically in
Fig. 1. Keeping terms to third order upon squaring and spin averaging these matrix elements
results in

〈|Tk+,k′+|2〉 = 〈|Tk−,k′−|2〉

= J 2

8
|h(k)h(k′)|2

(
1 + sin2 θ ′

2

)[
1 − J

2
(g+ + g− + c.c.)

]
(32)

and

〈|Tk−,k′+|2〉 = 〈|Tk+,k′−|2〉

= J 2

8
|h(k)h(k′)|2

(
1 + cos2 θ ′

2

)[
1 − J

2
(g+ + g− + c.c.)

]
. (33)
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Fig. 1 The diagrammatic expansion of the second order contributions to the T matrix element Tk′+,k+ for
the finite range Kondo-Rashba model. The solid line represents the propagator for a Rashba quasi-particle, the
dashed line represents the impurity, and time flows from left to right. The internal momentum q is summed
over. After interacting with one of the Rashba quasi-particles the impurity is no longer in a spin eigenstate
and so the spin states of the impurity are not labelled here

In these equations, θ ′ is the angle between the two momentum vectors k and k′, c.c. repre-
sents the complex conjugate of the preceding terms, and we have defined

g± := − V

(2π)2

∫
d2q|h(q)|2 f (ε±

q ) − 1
2

ε − ε±
q + iη

(34)

which comes from summing over the intermediate momentum state and is non-divergent
due to the momentum cut-off coming from the finite size of the interaction via the function
h(q).

In order to continue with this calculation, we make some assumptions regarding the var-
ious energy scales that are present in this system. Let D := �2/2m be the energy scale
associated with the high-energy cutoff that arises from the finite range of the interaction
and assume that D > εF . Relative to the Fermi energy, the lower cutoff is approximately εF

(the distance between the Fermi energy and the bottom of the band) and the upper cutoff is
approximately D − εF . We have already assumed that J 
 εF by truncating the above per-
turbation expansion. Since the spin-orbit coupling is relatively weak in all physical systems
that are studied, we also assume that εR 
 εF and εR 
 D. We are interested in the low
temperature behaviour and can therefore assume that T 
 εF and T 
 (D − εF ). This last
assumption allows us to approximate derivatives of the Fermi-Dirac distribution

df

dε
≈ −δ(ε − εF ) (35)

except in terms that diverge as T → 0. Such an approximation, as was used in Kondo’s
original calculation [1], is valid since the dominant behaviour comes from the diverging
logarithm, as will be seen.

Substituting (32) and (33) into (30) results in the scattering rates

1

τ±
1 (k)

= πcimpJ
2ρ0

8
�±

k

(
1 − J

2
(g+ + g− + c.c.)

)
. (36)

The function �±
k takes different forms depending on which range of k space one is in with

respect to kR and �. However, we are only concerned with the value of this function in the
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vicinity of the Fermi wave vectors kF± since τ±
1 is eventually multiplied by a derivative of

the Fermi-Dirac distribution in (29). Hence, we can take

�±
k = 6 + k2

R

(k ± kR)2
= 6 + εR

ε±
k + εR

(37)

which is strictly valid for 2kR < k < � − 2kR .
To evaluate g± and the integral in the expression for the conductivity, it is convenient

to convert them to integrals over energy using the density of states which, for the Rashba
bands, are

ρ+(ε) = ρ0(ε)

[
1 −

√
εR

ε + εR

]
, (38)

ρ−(ε) = ρ0(ε + εR)

[
1 +

√
εR

ε + εR

− (−ε)

(
1 −

√
εR

ε + εR

)]
, (39)

where, as above, ρ0 = m/2π is the two dimensional density of states for a Fermi gas. Un-
der the approximations discussed above, inverting (36) to leading order in J and εR and
substituting into (29) yields

σ(T ) = 4e2(εF + 5
6εR)

3π2cimpJ 2ρ0

(
1 − J

2

∫ D

0
dε(g+ + g− + c.c.)

df

dε

)
. (40)

The difference in the limits of integration between the two bands has been ignored on ac-
count of the presence of df/dε.

However, the integrals in g± are evaluated by integrating by parts. The integrands are
evaluated at their respective limits and so the differences between the two bands will become
manifest. Writing

g± = −
∫ ∞

−∞
dε′ρ±(ε′)|h(k±(ε′))|2 f (ε′) − 1

2

ε − ε′ + iη
, (41)

where k±(ε′) is the inversion of ε±
k , integrating by parts, substituting into (40), and inverting

to leading order in J yields an expression for the resistivity

R(T ) = 1

σ(T )
= 3π2cimpJ

2ρ0

4e2(εF + 5
6εR)

[
1 − J

2
(I + ρ0K)

]
. (42)

The diverging logarithm comes from the term

I :=
∑

a,b=±
ρa(εF )

∫ εa
�

0
dε

∫ εb
�

0
dε′ ln

∣∣∣∣ ε − ε′√
εF (εb

� − εF )

∣∣∣∣dfdε

df

dε′ (43)

and all of the terms arising from the integral over the square root in the density of states have
been collected in the term

K := 2

√
εR

εF + εR

(
arctanh

√
ε+
� + εR

εF + εR

− arctanh

√
ε−
� + εR

εF + εR

− 2 arctanh

√
εR

εF + εR

)
. (44)
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Again, we have used the assumptions and approximations discussed above except in the
case of the log term which diverges as T → 0.

We can extract the temperature dependence by making the change of variables x(′) =
(ε(′) − εF )/T in the above integral to obtain the final expression

R(T ) = 3π2cimpJ
2ρ0

4e2(εF + 5
6εR)

[
1 − J

2
ρ0

(
ln

T 4

ε2
F (ε+

� − εF )(ε−
� − εF )

+ K + C

)]
, (45)

where C is simply a finite number. As εR → 0, this reduces to the classic resistivity of the
Kondo model

R0(T ) = 3π2cimpJ
2ρ0

4e2εF

[
1 − 2Jρ0

(
ln

T

D0
+ C

4

)]
(46)

with D0 := √
εF (D − εF ) being the UV cutoff in the absence of spin-orbit coupling.

3.1 Interpretation of Spin-Orbit Effects

The analysis of the effective one dimensional model showed us that any change in the low-
energy behaviour of the Kondo-Rashba system should be interpreted as a change in the
cutoff. Since we are considering the case where εR 
 εF and εR 
 D, we can simplify the
above expression for the resistivity, (45), by keeping only terms up to first order in εR/εF

and εR/D

R(T ) ≈ 3π2cimpJ
2ρ0

4e2(εF + 5
6εR)

[
1 − 2Jρ0

(
ln

T

Deff
+ C

4

)]
, (47)

where we have interpreted all of the changes as giving rise to an effective cutoff

Deff = D0

(
1 + εR

εF

D(D − 2εF )

(D − εF )2

)
. (48)

Given that we had no way of determining the change in the cutoff from the low energy
one dimensional model, we propose that the change in the cutoff determined from the calcu-
lation of the resistivity may give us a further clue since it incorporates the full, non-linearized
bands and a physical “real” cutoff. In the presence of Rashba spin-orbit coupling, the Kondo
temperature would be

TK = Deffe
− 1

2Jρ0 = T 0
K

(
1 + εR

εF

D(D − 2εF )

(D − εF )2

)
, (49)

where T 0
K is the Kondo temperature using the cutoff D0.

In the case where the magnetic impurity is extremely localized, D � εF , this expression
reduces to

TK ≈ T 0
K

(
1 + εR

εF

)
(50)

which is independent of the details of the cutoff. The generality and utility of these expres-
sions will be discussed in the following section.
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4 Discussion

The analysis presented above shows that the low energy behaviour of the Kondo model, that
is, the formation of a singlet that screens the magnetic impurity, persists in the presence of a
Rashba spin orbit coupling even though such an interaction breaks the SU(2) symmetry so
that spin states are no longer eigenstates of the Hamiltonian. The effective one dimensional
model for the Kondo-Rashba system has the form of a single impurity, single channel Kondo
model with an effective mass and exchange interaction that is rescaled as a function of the
strength of the spin-orbit coupling, (26) and (25). However, this rescaling combines in such
away as to be cancelled out in the expression for the Kondo temperature, which is the only
energy scale on which the low energy behaviour of this system depends. However, to derive
such a low energy model, one must impose an ad hoc cutoff which may be modified in
the presence of spin-orbit coupling, though it is impossible to derive such a change of the
effective cutoff in this low energy formalism.

To get a better sense of how the cutoff may be modified, the resistivity of the full two
dimensional Kondo-Rashba model, defined over the whole energy range up to a high energy
cutoff, D, arising from the finite size of the interaction, was calculated and changes wrought
by the Rashba coupling interpreted as giving rise to an effective cutoff, (48). Using such a
cutoff in the expression for the Kondo temperature leads to the prediction that the presence
of Rashba spin-orbit coupling will have the effect of slightly increasing or decreasing (de-
pending on whether D is greater than or less than 2εF respectively) the Kondo temperature
as a linear function of εR/εF for small values of this dimensionless parameter.

In the calculation of the resistivity, all of the modifications that arose due to the spin-orbit
coupling came from the changes in the band structure (as was manifest in the densities of
state ρ±(ε)) and not from the modifications to the Kondo coupling, despite the apparent
complicated nature of the interaction (7). Hence, it is not surprising that the low energy
effective model, which required us to linearize the energy bands about the Fermi energy and
so neglect the changes in the band structure (since both bands have the same Fermi velocity),
failed to show any change in the physical behaviour of the system.

Yet, it was still necessary to impose a cutoff in the full two dimensional model by in-
troducing a finite range to the hybridization between the impurity and the conduction elec-
trons, the precise form of which (characterized by the envelope function h(k)) was chosen
for simplicity. Hence, any results that depend on the nature of the hybridization may be of
questionable use. In particular, the general expression for the Kondo temperature, (49), de-
pends on the energy cutoff D. However, in the case of a highly localized impurity, D � εF

and the universal result stated in (50) is obtained. It is in such a localized regime that these
results are expected to be of greatest utility since they are independent of the details of the
cutoff mechanism.3

4.1 Application to Experiment

The simple models used to derive these results were chosen so that the effects of the spin-
orbit coupling would be as transparent as possible. One may now inquire as to their ap-
plicability to real two dimensional systems that are of experimental interest. In particular,
we consider two broad possibilities: that of quantum dots constructed in semi-conductor
heterostructures and that of magnetic atoms placed on a clean metallic surface.

3It should be noted that the universal expression for the Kondo temperature (50) still assumes that the hy-
bridization between the local spin and the conduction electrons is circularly symmetric.
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In the case of quantum dots, we conclude that the above analysis cannot apply for two
reasons. For one, the imposition of rotational invariance in the plain of the electron gas is
clearly not present in the complicated gated structures that are manufactured in the labora-
tory. In our calculation of the resistivity, rotational invariance played a crucial role in main-
taining the Kondo effect (as manifest by the logarithm term) in the presence of spin-orbit
interactions. To be more precise, the rotational invariance is the reason why the integrations
over an intermediate + and − Rashba quasi-particle in the perturbative calculation of the
T-matrix (as denoted diagrammatically in Fig. 1 and represented analytically by the terms
g+ and g− respectively in (32) and (33)) occur with equal weighting in the final T-matrix
expression; the difference between the interactions involving + and − particles, as shown
in the Hamiltonian (7), all occur with a factor of e±iθ in the T-matrix and so integrate to
zero only when you integrate over all angles from 0 to 2π . This is reminiscent of the results
of [25, 26] wherein a magnetic impurity embedded in a host metal with spin-orbit interac-
tion was studied. It was shown that the Kondo effect is suppressed only when the impurity
is close to a boundary and, hence, the rotational isotropy of the system is broken.

The second reason why our analysis fails in the case of semi-conductor quantum dots is
the relative strength of the energy scales. In particular, if one assumes that the distance scale
of the finite range, a, is of order the radius of a typical quantum dot (say a ≈ 50 nm [3, 4]),
then this leads to an energy cutoff D = �2/2m = 2π2/(ma2) ≈ 0.008 eV. This is generally
smaller than the typical values of the Fermi energy in the two dimensional electron gas of
the semi-conductor heterostructure (typically εF ≈ 0.03 eV [21, 22]), completely negating
our necessary assumption that D > εF . This suggests that a more accurate model is required
to study the Kondo effect with Rashba coupling in quantum dots, some examples of which
have already been studied [14–17].

It is more likely that the results obtained in this paper are applicable to systems of mag-
netic atoms placed on the surface of a metal. There, the rotational isotropy is manifest (as-
suming that the surface is “clean”), and the dispersion relation of the surface conduction
electrons more closely approximated by the two Rashba bands (3) (as shown in various ex-
periments, e.g. those described in [12]). Furthermore, the Fermi energy is generally much
larger for the surface state electrons than in the semiconductor two dimensional electron gas
(εF ≈ 0.5 eV for typical metallic surfaces) making it much more likely that the length scale
over which the magnetic atom hybridizes with the conduction electrons is such that D > εF .
Indeed, assuming that such a hybridization takes place over the observed size of the impurity
atom, a radius of a ≈ 7 Å [12], then D ≈ 11 eV > εF .

As a result, one could imagine detecting a change in the Kondo temperature as a result of
the Rashba spin-orbit coupling by measuring the Kondo temperature of the same magnetic
atom on different metallic surfaces with different strengths of the Rashba coupling. This
is likely to be terribly difficult to detect given that the change due to spin-orbit coupling
is typically very small, being linear in εR/εF (εR/εF ≈ 0.003 for the case of an Au(111)
surface and immeasurable in Cu(111) and Ag(111) [12, 23]). Such an effect is likely to be
overwhelmed by other differences between the two systems. A clearer signature of this effect
could be seen if one were able to tune the Rashba coupling independently from the Fermi
energy, something that has been demonstrated in semi-conductor heterostructures [27] but
not for the coupling in metallic surface electrons. Hence, for the purposes of observing this
effect, it may be worth pursuing a more realistic model of a quantum dot system in such a
two dimensional electron gas where one has the ability to tune the Rashba coupling.

As was demonstrated in [13], the presence of time reversal symmetry plays a fundamental
role in the survival of the Kondo effect in the presence of spin-orbit interactions. Another
interesting question to pursue is how the presence of a magnetic field, which breaks time
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reversal invariance, can be incorporated into the models introduced above and how such a
field modifies the results.
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Appendix 1: Derivation of the Kondo Model from a Finite Range Anderson Impurity
Model

Here, we review the Schrieffer-Wolff transformation of an Anderson impurity model with-
out spin-orbit coupling. The purpose is to highlight how a finite range hybridization between
the impurity state and the non-interacting conduction electrons manifests itself in the result-
ing Kondo interaction. It is that Kondo interaction that is then used as input into the two
dimensional Kondo-Rashba model studied in this paper.

The Kondo model used in this paper can be thought of as deriving from the Anderson
impurity model [19, 20] of an impurity electronic state annihilated by dμ interacting with
a sea of conduction electrons annihilated by �kμ. The Hamiltonian for this model can be
written as

H = 1

(2π)2

∫
d2kεk�

†
kμ�kμ + εdd

†
μdμ + Und↑nd↓ + Hhyb, (51)

where ndμ := d†
μd(μ). The hybridization between the impurity and conduction electrons is

chosen to take the following form

Hhyb = t
V

1
2

(2π)2

∫
d2k(h(k)d†

μ�kμ + h.c.). (52)

Here, V is the two dimensional volume of the system, h.c. denotes the Hermitian conjugate
of the preceding term and h(k) is the Fourier transform of an “envelope function” h̃(x) that
describes the extent over which the impurity interacts with the conduction electrons. This
envelope function has the property that its maximum is at the origin, that it only depends on
the distance from the origin (i.e. it is circularly symmetric), and that it decays to zero after
some characteristic length scale a.

One can perform a canonical transformation, the Schrieffer-Wolff transformation [24],
perturbatively in t/U , to obtain the s-d or Kondo model

H = V

2π

∫
d2kεk�

†
kμ�kμ + V 2

4π2

∫
d2kd2k′Jkk′S · �†

kμ

σμν

2
�k′ν, (53)

where S = d†
μ

σμν

2 dν is the operator of the impurity electron and

Jkk′ = t2h∗(k)h(k′)
[

1

U + εd − εk′
+ 1

εk − εd

]
. (54)

A potential scattering term is also generated but is neglected in our analysis as it does not
play a crucial role in determining spin-orbit effects. If we are deep in the so-called local-
moment regime where the singly and doubly occupied impurity levels are equally spaced
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below and above the Fermi energy (i.e. εk = εk′ ≈ εF and εd ≈ εF − U/2) then we can
simplify the above to

Jkk′ ≈ 8t2

U
h∗(k)h(k′) ≡ Jh∗(k)h(k′). (55)

The traditional choice in most theoretical analysis is to take h(k) = 1, which is the Fourier
transform of a delta function in position space and corresponds to having a point-like inter-
action. This is the form of the envelope we will use in Sect. 2.2. However, in Sect. 3, it will
be necessary to make the range of interaction finite in order to provide a more physical ultra-
violet cutoff. So, for ease of computation, we take h(k) = (� − k) which corresponds to
a position space envelope function

h̃(x) = �

x
J1(�x) (56)

with Jν(z) being the Bessel functions of the 1st kind. Such a function has an effective range
of a = 2π/�.

Appendix 2: Boltzmann Theory of Transport for Non-Degenerate Bands

In this appendix, we generalize the standard Boltzmann theory of transport, as described
in [2], for example, to the case where there are multiple bands, εa

k , that are not necessarily
degenerate. Consider such a system in the presence of a weak static electric field E. This
will give rise to a distribution function, f a

E(k), for each band. The time rate of change is
assumed to satisfy the relaxation hypothesis

df a
E(k)

dt
= −f a

E(k) − f a(k)

τ a
1 (k)

, (57)

where f a(k) ≡ f (εa
k ), the Fermi-Dirac distribution. Assuming that such time rate of change

only comes about via the change in momentum k as a function of time, then we can equate
the above to (dk/dt) · ∇f a

E(k) = −eE · ∇f a
E(k). Working to first order in E yields

f a
E(k) ≈ f a(k) + eτ a

1 (k)
∂f a(k)

∂εa
k

va
k · E (58)

with va
k := ∇εa

k being the band velocity.
Substituting this into the expression for the current

J = σ(T )E = −e

∫
ddk

(2π)2

∑
a

f a
E(k)va

k (59)

and averaging over all directions of space gives us

σ(T ) = −e2

d

∫
ddk

(2π)d

∑
a

(va
k )

2τ a
1 (εa

k )
∂f a

∂εa
k

. (60)

To calculate the relaxation time, we introduce the scattering rate between the state |ka〉
and |k′a′〉 given by Fermi’s golden rule
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Wka,k′a′ = 2π〈|Tka,k′a′ |2〉δ(εa
k − εa′

k′ ) (61)

where Tka,k′a′ is the T-matrix as introduced in Sect. 3.
The rate of change of the distribution function f a

E(k) due to impurity interactions can
then be obtained by summing over all possible transitions of the state |ka〉:
df a

E(k)

dt
= −cimp

∫
ddk′

(2π)d

∑
a′

[
Wka,k′a′f a

E(k)
(
1 − f a′

E (k′)
) − Wk′a′,kaf

a′
E (k′)(1 − f a

E(k))
]

= −2πcimp

∫
ddk′

(2π)d

∑
a′

〈|Tka,k′a′ |2〉(f a
E(k) − f a′

E (k′)
)
δ
(
εa
k − εa′

k′
)
,

cimp being the concentration of impurities. Equating this to −eE · ∇f a
E(k) and using (58)

results in the expression

va
k · E = 2πcimpτ

a
1 (k)

∫
ddk′

(2π)d

∑
a′

〈|Tka,k′a′ |2〉(va
k − va′

k′
) · Eδ

(
εa
k − εa′

k′
)
. (62)

Specializing now to two dimensions, we assume that va
k is at most linear in k (which is

true for the Rashba bands studied in this paper), that the T-matrix depends only on the angle
between its two input momentum, and that the T-matrix is symmetric in that angle. These
allow us to make the following substitution within the integrand above

va′
k′ · E → va′

k′ E cos θ cos θ ′ = va′
k′

va
k

va
k · E cos θ ′, (63)

where θ is the angle between k and E and θ ′ is the angle between k and k′. The reason this
works is that the sine term that would also be included in the expression for the dot product
vanishes after integrating over the angular variable. Using this substitution we can extract
an expression for the scattering rate

1

τ a
1 (k)

= 2πcimp

∫
ddk′

(2π)d

∑
a′

〈|Tka,k′a′ |2〉
(

1 − va′
k′

va
k

cos θ ′
)

δ
(
εa
k − εa′

k′
)
. (64)

This can then be used in (60) to evaluate the conductivity.
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